Building Your First AI Agent with MCP

Complete developer guide: From Hello World to production-ready AI agents

โฑ๏ธ 60 minutes ๐Ÿ“Š Intermediate ๐Ÿ Python + MCP

What You'll Build

In this comprehensive tutorial, you'll create three progressively advanced AI agents using the Model Context Protocol (MCP):

๐ŸŒŸ Hello World Agent (15 min)

Basic MCP server with greeting functionality. Perfect introduction to MCP concepts and architecture.

๐ŸŒค๏ธ Weather Intelligence Agent (30 min)

Real-world agent with API integration, error handling, and caching for weather data.

๐Ÿš€ Production-Ready Agent (60 min)

Enterprise-grade agent with advanced features, validation, monitoring, and deployment strategies.

Prerequisites & Environment Setup

Before we begin building, ensure you have the proper development environment configured:

System Requirements

Quick Environment Setup

๐Ÿ“ฆ Step 1: Install Modern Package Manager

We'll use uv for fast Python package management:

curl -LsSf https://astral.sh/uv/install.sh | sh

๐Ÿ—๏ธ Step 2: Create Project Structure

Set up your development workspace:

# Create project directory uv init my-first-mcp-agent cd my-first-mcp-agent # Create virtual environment uv venv source .venv/bin/activate # On Windows: .venv\Scripts\activate # Install MCP SDK with development tools uv add "mcp[cli]" httpx pydantic redis python-dotenv

โœ… Verification

Test your installation with: python -c "import mcp; print('MCP installed successfully!')"

Understanding MCP Architecture

Before diving into code, let's understand the core MCP concepts that power AI agent development:

MCP Agent Architecture โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Claude Desktop โ”‚ โ”‚ (or other MCP client) โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ JSON-RPC 2.0 โ”‚ stdio/HTTP/WebSocket โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Your MCP Server โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Tools Registry โ”‚ โ”‚ โ”‚ โ”‚ โ€ข API integrations โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Data processing โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Business logic โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Resources Registry โ”‚ โ”‚ โ”‚ โ”‚ โ€ข File access โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Database connections โ”‚ โ”‚ โ”‚ โ”‚ โ€ข External services โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ› ๏ธ Tools

Functions that Claude can call to perform actions like API calls, calculations, or data processing.

๐Ÿ“ Resources

Data sources that Claude can read from, such as files, databases, or web content.

๐Ÿ”„ Protocol

JSON-RPC 2.0 communication protocol enabling standardized AI-agent interaction.

Step 1: Hello World MCP Server (15 minutes)

Let's start with the simplest possible MCP server to understand core concepts:

๐ŸŽฏ Goal: Create Basic MCP Server

Build a minimal working MCP server with a greeting tool and server information resource.

# hello_mcp.py - Your first MCP server from mcp.server.fastmcp import FastMCP import asyncio # Create server instance with descriptive name mcp = FastMCP("Hello World AI Agent") @mcp.tool() def greet_user(name: str) -> str: """Greet a user by name with a friendly message""" return f"Hello, {name}! ๐Ÿ‘‹ I'm your first MCP agent, ready to help!" @mcp.tool() def get_server_stats() -> dict: """Provide basic server statistics and information""" return { "server_name": "Hello World AI Agent", "version": "1.0.0", "status": "active", "capabilities": ["greeting", "information"] } @mcp.resource("info://server") def server_info() -> str: """Provide comprehensive server information""" return """ Hello World MCP Server - Your First AI Agent! This server demonstrates basic MCP concepts: - Tool registration and execution - Resource provision - JSON-RPC communication protocol Available tools: - greet_user(name): Personal greeting functionality - get_server_stats(): Server status and capabilities Ready to build more advanced agents! """ if __name__ == "__main__": # Run the server asyncio.run(mcp.run())

Testing Your First Agent

๐Ÿงช Test the Server

Verify your MCP server works correctly:

# Run the server directly python hello_mcp.py # Test with MCP CLI tools (in another terminal) mcp test hello_mcp.py --tool greet_user --args '{"name": "Developer"}'

โœ… Expected Output

You should see: Hello, Developer! ๐Ÿ‘‹ I'm your first MCP agent, ready to help!

Step 2: Weather Intelligence Agent (30 minutes)

Now let's build a practical agent that integrates with external APIs and handles real-world data:

๐ŸŽฏ Advanced Features

  • External API integration (OpenWeatherMap)
  • Comprehensive error handling
  • Input validation with Pydantic
  • Async/await patterns
  • Resource-based data access

โš ๏ธ API Key Required

You'll need a free OpenWeatherMap API key. Sign up at openweathermap.org/api and replace your-api-key-here in the code.

# weather_agent.py - Practical weather intelligence agent from mcp.server.fastmcp import FastMCP import httpx import asyncio import os from typing import Dict, Any, Optional from pydantic import BaseModel, validator from datetime import datetime import logging # Setup logging for debugging and monitoring logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) # Data validation models class WeatherQuery(BaseModel): city: str country: str = "US" units: str = "metric" @validator('city') def validate_city(cls, v): if not v or len(v) > 100: raise ValueError('City name is required and must be under 100 characters') return v.strip() # Initialize MCP server mcp = FastMCP("Weather Intelligence Agent") # Configuration API_KEY = os.getenv("OPENWEATHER_API_KEY", "your-api-key-here") BASE_URL = "https://api.openweathermap.org/data/2.5" @mcp.tool() async def get_current_weather(city: str, country: str = "US") -> Dict[str, Any]: """Get current weather conditions for a specified city Args: city: Name of the city (e.g., 'San Francisco') country: Country code (e.g., 'US', 'UK', 'CA') Returns: Dict containing weather data or error information """ try: # Validate input query = WeatherQuery(city=city, country=country) # Build API request url = f"{BASE_URL}/weather" params = { "q": f"{query.city},{query.country}", "appid": API_KEY, "units": query.units } # Make async API call with timeout async with httpx.AsyncClient() as client: response = await client.get( url, params=params, timeout=10.0 ) # Handle successful response if response.status_code == 200: data = response.json() logger.info(f"Successfully retrieved weather for {city}, {country}") return { "success": True, "city": data["name"], "country": data["sys"]["country"], "temperature": data["main"]["temp"], "feels_like": data["main"]["feels_like"], "description": data["weather"][0]["description"].title(), "humidity": data["main"]["humidity"], "pressure": data["main"]["pressure"], "wind_speed": data.get("wind", {}).get("speed", 0), "timestamp": datetime.now().isoformat() } else: logger.error(f"API request failed: {response.status_code}") return { "success": False, "error": f"Weather API returned status {response.status_code}", "message": "Unable to fetch weather data. Please check city name and try again." } except ValueError as e: logger.error(f"Validation error: {e}") return { "success": False, "error": "validation_error", "message": str(e) } except httpx.TimeoutException: logger.error(f"Timeout fetching weather for {city}") return { "success": False, "error": "timeout", "message": "Request timed out. Please try again later." } except Exception as e: logger.exception(f"Unexpected error fetching weather: {e}") return { "success": False, "error": "internal_error", "message": "An internal error occurred. Please try again." } @mcp.tool() async def get_weather_forecast(city: str, days: int = 5) -> Dict[str, Any]: """Get weather forecast for the next few days Args: city: Name of the city days: Number of days to forecast (1-5) Returns: Dict containing forecast data """ try: # Validate inputs if days < 1 or days > 5: return { "success": False, "error": "validation_error", "message": "Days must be between 1 and 5" } # API call for forecast data url = f"{BASE_URL}/forecast" params = { "q": city, "appid": API_KEY, "units": "metric", "cnt": days * 8 # 8 forecasts per day (every 3 hours) } async with httpx.AsyncClient() as client: response = await client.get(url, params=params, timeout=10.0) if response.status_code == 200: data = response.json() return { "success": True, "city": data["city"]["name"], "forecast_count": len(data["list"]), "forecasts": [ { "datetime": item["dt_txt"], "temperature": item["main"]["temp"], "description": item["weather"][0]["description"].title(), "humidity": item["main"]["humidity"] } for item in data["list"][:days*2] # Limit to reasonable amount ] } else: return { "success": False, "error": f"API error: {response.status_code}" } except Exception as e: logger.exception(f"Error fetching forecast: {e}") return { "success": False, "error": "internal_error", "message": str(e) } @mcp.resource("weather://cities/{city}") async def city_weather_info(city: str) -> str: """Get comprehensive weather information for a city as a formatted resource""" weather_data = await get_current_weather(city) if weather_data["success"]: return f""" Weather Report for {weather_data['city']}, {weather_data['country']} Generated: {weather_data['timestamp']} ๐ŸŒก๏ธ Temperature: {weather_data['temperature']}ยฐC (feels like {weather_data['feels_like']}ยฐC) ๐ŸŒค๏ธ Conditions: {weather_data['description']} ๐Ÿ’ง Humidity: {weather_data['humidity']}% ๐Ÿ—œ๏ธ Pressure: {weather_data['pressure']} hPa ๐Ÿ’จ Wind Speed: {weather_data['wind_speed']} m/s This data is provided by OpenWeatherMap API and updated in real-time. """ else: return f"Weather data unavailable for {city}. Error: {weather_data.get('message', 'Unknown error')}" if __name__ == "__main__": # Run the weather intelligence agent print("๐ŸŒค๏ธ Starting Weather Intelligence Agent...") print("Make sure to set your OPENWEATHER_API_KEY environment variable!") asyncio.run(mcp.run())

Testing Your Weather Agent

๐Ÿ”ง Setup API Key

Set your environment variable before testing:

# Set API key (replace with your actual key) export OPENWEATHER_API_KEY="your_actual_api_key_here" # Test the weather agent python weather_agent.py # In another terminal, test specific functionality mcp test weather_agent.py --tool get_current_weather --args '{"city": "San Francisco", "country": "US"}'

Step 3: Production-Ready Features (45 minutes)

Let's enhance our weather agent with enterprise-grade features for production deployment:

๐Ÿ”’ Advanced Error Handling

Comprehensive error categorization, rate limiting, and recovery strategies

โšก Performance Optimization

Redis caching, connection pooling, and response time optimization

๐Ÿ“Š Monitoring & Logging

Structured logging, metrics collection, and health checks

๐Ÿ›ก๏ธ Security & Validation

Input sanitization, rate limiting, and secure API key management

# production_weather_agent.py - Enterprise-ready MCP server from mcp.server.fastmcp import FastMCP import httpx import asyncio import redis.asyncio as redis import json import os from typing import Dict, Any, Optional from pydantic import BaseModel, validator from datetime import datetime, timedelta from enum import Enum import logging import time from functools import wraps # Enhanced logging configuration logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(funcName)s:%(lineno)d - %(message)s', handlers=[ logging.FileHandler('weather_agent.log'), logging.StreamHandler() ] ) logger = logging.getLogger(__name__) # Error categorization class ErrorCode(Enum): VALIDATION_ERROR = "VALIDATION_ERROR" API_ERROR = "API_ERROR" RATE_LIMIT = "RATE_LIMIT" CACHE_ERROR = "CACHE_ERROR" NETWORK_ERROR = "NETWORK_ERROR" INTERNAL_ERROR = "INTERNAL_ERROR" # Enhanced validation models class WeatherQuery(BaseModel): city: str country: str = "US" units: str = "metric" @validator('city') def validate_city(cls, v): if not v or len(v.strip()) == 0: raise ValueError('City name is required') if len(v) > 100: raise ValueError('City name must be under 100 characters') # Basic sanitization sanitized = ''.join(c for c in v if c.isalnum() or c in ' -') return sanitized.strip() @validator('units') def validate_units(cls, v): valid_units = ['metric', 'imperial', 'kelvin'] if v not in valid_units: raise ValueError(f'Units must be one of {valid_units}') return v # Production MCP server with caching class ProductionWeatherAgent: def __init__(self): self.mcp = FastMCP("Production Weather Intelligence Agent") self.api_key = os.getenv("OPENWEATHER_API_KEY") self.redis_client: Optional[redis.Redis] = None self.http_client: Optional[httpx.AsyncClient] = None self.request_count = 0 self.start_time = time.time() # Rate limiting configuration self.rate_limit_requests = 100 # requests per hour self.rate_limit_window = 3600 # 1 hour self._register_tools() async def initialize(self): """Initialize async components""" try: # Initialize Redis connection redis_url = os.getenv("REDIS_URL", "redis://localhost:6379") self.redis_client = redis.from_url(redis_url, decode_responses=True) await self.redis_client.ping() logger.info("Redis connection established") except Exception as e: logger.warning(f"Redis connection failed: {e}. Continuing without caching.") self.redis_client = None # Initialize HTTP client with connection pooling timeout = httpx.Timeout(10.0, connect=5.0) limits = httpx.Limits(max_keepalive_connections=5, max_connections=10) self.http_client = httpx.AsyncClient(timeout=timeout, limits=limits) def rate_limit(self, func): """Decorator for rate limiting""" @wraps(func) async def wrapper(*args, **kwargs): if await self._check_rate_limit(): return { "success": False, "error_code": ErrorCode.RATE_LIMIT.value, "message": "Rate limit exceeded. Please try again later." } return await func(*args, **kwargs) return wrapper async def _check_rate_limit(self) -> bool: """Check if rate limit is exceeded""" current_time = time.time() if current_time - self.start_time > self.rate_limit_window: self.request_count = 0 self.start_time = current_time self.request_count += 1 return self.request_count > self.rate_limit_requests async def _get_cached_data(self, cache_key: str) -> Optional[dict]: """Retrieve data from cache""" if not self.redis_client: return None try: cached_data = await self.redis_client.get(cache_key) if cached_data: return json.loads(cached_data) except Exception as e: logger.error(f"Cache retrieval error: {e}") return None async def _set_cached_data(self, cache_key: str, data: dict, ttl: int = 600): """Store data in cache""" if not self.redis_client: return try: await self.redis_client.setex(cache_key, ttl, json.dumps(data)) except Exception as e: logger.error(f"Cache storage error: {e}") def _register_tools(self): """Register all MCP tools""" @self.mcp.tool() @self.rate_limit async def get_current_weather_cached(city: str, country: str = "US") -> Dict[str, Any]: """Get current weather with intelligent caching""" return await self._get_weather_with_cache(city, country) @self.mcp.tool() async def get_agent_health() -> Dict[str, Any]: """Get agent health and performance metrics""" return { "status": "healthy", "uptime_seconds": time.time() - self.start_time, "requests_processed": self.request_count, "cache_available": self.redis_client is not None, "api_key_configured": bool(self.api_key and self.api_key != "your-api-key-here"), "timestamp": datetime.now().isoformat() } async def _get_weather_with_cache(self, city: str, country: str) -> Dict[str, Any]: """Get weather data with caching logic""" try: # Validate input query = WeatherQuery(city=city, country=country) cache_key = f"weather:{query.city}:{query.country}" # Try cache first cached_result = await self._get_cached_data(cache_key) if cached_result: logger.info(f"Cache hit for {city}, {country}") cached_result["cache_hit"] = True return cached_result # Fetch from API weather_data = await self._fetch_weather_api(query) # Cache successful results if weather_data["success"]: weather_data["cache_hit"] = False await self._set_cached_data(cache_key, weather_data, 600) # 10 minutes return weather_data except ValueError as e: logger.error(f"Validation error: {e}") return { "success": False, "error_code": ErrorCode.VALIDATION_ERROR.value, "message": str(e) } except Exception as e: logger.exception(f"Unexpected error: {e}") return { "success": False, "error_code": ErrorCode.INTERNAL_ERROR.value, "message": "Internal server error" } async def _fetch_weather_api(self, query: WeatherQuery) -> Dict[str, Any]: """Fetch weather data from OpenWeatherMap API""" if not self.api_key or self.api_key == "your-api-key-here": return { "success": False, "error_code": ErrorCode.API_ERROR.value, "message": "API key not configured" } url = "https://api.openweathermap.org/data/2.5/weather" params = { "q": f"{query.city},{query.country}", "appid": self.api_key, "units": query.units } try: response = await self.http_client.get(url, params=params) if response.status_code == 200: data = response.json() logger.info(f"API success for {query.city}, {query.country}") return { "success": True, "city": data["name"], "country": data["sys"]["country"], "temperature": data["main"]["temp"], "feels_like": data["main"]["feels_like"], "description": data["weather"][0]["description"].title(), "humidity": data["main"]["humidity"], "pressure": data["main"]["pressure"], "wind_speed": data.get("wind", {}).get("speed", 0), "timestamp": datetime.now().isoformat() } else: logger.error(f"API error {response.status_code}: {response.text}") return { "success": False, "error_code": ErrorCode.API_ERROR.value, "message": f"Weather API returned status {response.status_code}" } except httpx.TimeoutException: logger.error(f"Timeout fetching weather for {query.city}") return { "success": False, "error_code": ErrorCode.NETWORK_ERROR.value, "message": "Request timed out" } except Exception as e: logger.exception(f"Network error: {e}") return { "success": False, "error_code": ErrorCode.NETWORK_ERROR.value, "message": "Network error occurred" } async def run(self): """Run the production weather agent""" await self.initialize() await self.mcp.run() async def cleanup(self): """Cleanup resources""" if self.http_client: await self.http_client.aclose() if self.redis_client: await self.redis_client.close() # Main execution async def main(): agent = ProductionWeatherAgent() try: print("๐Ÿš€ Starting Production Weather Intelligence Agent...") await agent.run() finally: await agent.cleanup() if __name__ == "__main__": asyncio.run(main())

Integration with Claude Desktop

Now let's configure your MCP server to work with Claude Desktop for seamless AI interactions:

๐Ÿ”ง Configuration Setup

Add your MCP server to Claude Desktop's configuration:

// ~/.claude/claude_desktop_config.json { "mcpServers": { "weather-agent": { "command": "/absolute/path/to/python", "args": ["/absolute/path/to/production_weather_agent.py"], "env": { "OPENWEATHER_API_KEY": "your_actual_api_key_here", "REDIS_URL": "redis://localhost:6379" } } } }

โœ… Testing Integration

  1. Save the configuration to ~/.claude/claude_desktop_config.json
  2. Restart Claude Desktop application
  3. Test with: "What's the weather in San Francisco?"
  4. Verify caching with: "Check the weather in San Francisco again"

Common Pitfalls & Solutions

Learn from common mistakes to build robust MCP agents:

โŒ Pitfall #1: Blocking Operations

Problem: Using synchronous operations that block the event loop

# โŒ Don't do this - blocks the server def bad_api_call(): response = requests.get("https://api.example.com") # Blocking! return response.json() # โœ… Correct approach - non-blocking async def good_api_call(): async with httpx.AsyncClient() as client: response = await client.get("https://api.example.com") return response.json()

โš ๏ธ Pitfall #2: Poor Error Messages

Problem: Generic errors that don't help users understand what went wrong

# โŒ Unhelpful error return {"error": "Something went wrong"} # โœ… Actionable error information return { "success": False, "error_code": "INVALID_CITY", "message": "City 'Atlantis' not found. Please check spelling.", "suggestions": ["Atlanta", "Atlantic City"], "help_url": "https://docs.example.com/city-lookup" }

โœ… Best Practice: Comprehensive Validation

Solution: Use Pydantic models for robust input validation

from pydantic import BaseModel, validator class SafeInput(BaseModel): command: str @validator('command') def validate_command(cls, v): allowed_commands = ['list', 'search', 'info'] if v not in allowed_commands: raise ValueError(f'Command must be one of {allowed_commands}') return v @mcp.tool() def safe_tool(command: str): validated = SafeInput(command=command) return execute_safe_command(validated.command)

Advanced Patterns & Next Steps

Take your MCP development to the next level with these advanced patterns:

Multi-Tool Coordination

@mcp.tool() async def comprehensive_weather_report(city: str) -> Dict[str, Any]: """Generate comprehensive weather report using multiple data sources""" # Coordinate multiple tools for complete analysis current_weather = await get_current_weather_cached(city) forecast = await get_weather_forecast(city, days=3) # Combine and analyze data report = { "city": city, "current": current_weather, "forecast": forecast, "analysis": generate_weather_insights(current_weather, forecast), "recommendations": generate_activity_recommendations(current_weather) } return report

Dynamic Tool Registration

def register_weather_tools(mcp_server, config): """Dynamically register tools based on available APIs""" if config.get("openweather_api_key"): mcp_server.register_tool("current_weather", get_current_weather) mcp_server.register_tool("forecast", get_weather_forecast) if config.get("weather_gov_access"): mcp_server.register_tool("us_weather", get_us_weather_service) if config.get("accuweather_key"): mcp_server.register_tool("detailed_forecast", get_accuweather_data)

Ready to Build Advanced AI Agents?

You've built your first AI agent with MCP! Take the next step and create production-ready agents that transform business operations.

Get Expert MCP Development Support

Custom agent development โ€ข Production deployment โ€ข Performance optimization

Conclusion: Your AI Agent Development Journey

Congratulations! You've successfully built three progressively advanced AI agents using the Model Context Protocol:

Key Concepts Mastered

๐Ÿ› ๏ธ MCP Protocol Mastery

Tools, resources, and JSON-RPC communication patterns

๐Ÿ”„ Async Programming

Non-blocking operations and event loop optimization

๐Ÿ›ก๏ธ Production Practices

Error handling, validation, caching, and monitoring

๐Ÿ“Š Performance Optimization

Connection pooling, rate limiting, and resource management

Your Next Steps

  1. Experiment with Custom APIs: Integrate your favorite services and build specialized agents
  2. Add Advanced Features: Implement machine learning, natural language processing, or computer vision
  3. Scale to Production: Deploy with Docker, implement monitoring, and add automated testing
  4. Build Agent Networks: Create multiple agents that coordinate and share information

The Model Context Protocol provides a powerful foundation for AI agent development. With the skills you've learned, you can build agents that transform business processes, enhance user experiences, and unlock new possibilities for AI integration.

Happy coding, and welcome to the future of AI agent development! ๐Ÿš€